哥德巴赫猜想被誉为数学皇冠上的明珠,也是久负盛名的近代世界三大数学难题之一,自从提出至今快300年的时间,也没有人能够给出完整证明,可见其难证之程度。
哥德巴赫猜想是数学家哥德巴赫于1742年在写给欧拉的信中提出来的,在写给欧拉的信中,哥德巴赫提出了一个这样的猜想:任意一个大于5的奇数都可以写成三个素数之和。但是作为提出这一个猜想的人,哥德巴赫却没有能够给出证明,于是只好求助于大名鼎鼎的数学家欧拉。
欧拉这个人相信大家都有了解吧,被誉为数学王子的他的确名副其实,有人说,作为一个算法学家,欧拉从来没有被人超越过。但是遗憾的是,直到欧拉去世,他也没有能够证明哥德巴赫猜想,一直到现在,几百年过去了,哥德巴赫猜想也没有被完全证明。
1742年6月7日,哥德巴赫写信给欧拉,提出了一个著名的猜想,他发现随便取一个奇数,都可以把它写成三个素数的和,例如77=53+17+7,例如461=257+199+5,这样的例子太多了,随后哥德巴赫猜想,任何大于5的奇数都是三个素数之和。后来欧拉回信,他说这个命题看起来是正确的,但是他也给不出严格的证明,同时欧拉将这个命题深入一步,提出了任何一个大于2的偶数都可以写成两个素数之和,但是对于这个命题,他也不能给出证明。
1966年,中国数学家陈景润证明了“1+2”成立,也就是“任何一个充分大的偶数都可以表示成两个素数之和,或者是一个素数和一个半素数之和”。哥德巴赫猜想这么难以证明,那么如果成功证明,有什么意义呢?其实在没有证明之前,谁也不知道这到底有什么意义,但是在证明的过程中,可能会衍生新的数学分支,用于解决这一问题,这对于数学的发展意义重大,毕竟有了当前数学无法解决的问题,数学家们肯定得想,是否是因为当今的数学理论不能解决这一问题呢?
其实世界性的数学难题多了去了,而当今的数学界对于哥德巴赫猜想的研究兴趣却没有以前那么强烈了,倒是另外有一个猜想,同样也是世界性难题,那就是黎曼猜想,而黎曼猜想同样难以证明,提出百余年了,也没有被证明。在当代数学界中,普遍认为最有研究价值的问题就是黎曼猜想了,如果黎曼猜想能够被证明的话,那么很多问题就会迎刃而解,但是对于哥德巴赫猜想目前还不知道如果证明了将有何作用。只能说哥德巴赫猜想容易懂但是不好证明,但是黎曼猜想对于一般人而言,恐怕是都很难读懂,所以更多的人对于哥德巴赫猜想更关注。
证明哥猜的作用,简而言之:
①如果哥猜能得到证明,至少解决了二百多年来数学家们所纠结的问题。其意义是重大的,影响是深远的。
②在证明哥猜的过程中,可发现许多的数学规律。
③就其不定方程的组成,可为星际运动的计算提供相应方法。
④密码的加密。
⑤玄乎点说,你只要能真心地研究哥猜,你也可能有指导战争的天赋!
⑥试验证:#=ρη!-2(pη!∈大于等于3的连续的素数的阶乘)。
总之,任何研究数学的行为,都可视为在揭示自然界的规律的举措。其意义和作用是不言而喻的。